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Motivation

e Lyapunov method 1s one of the most important tools i nonlinear systems. It is
extremely important in analysis of stability of autonomous systems. It works not
only for local. but also for global.

e Lyapunov method has a widespread use i mathematics., control sciences.
engineering, physics. financial economics, etc.




Lyapunov Stability for Autonomous Systems

Consider an autonomous system

= (). 9.1)

where f:D — R" 1slocallyLip., Dc R" and f(0)=0.
We say that the system (9.1) 1s complete if for any mitial state x, €D, the
solution x=ux(7;x,) of (9.1) exists for all #>0. That 1s, there i1s no blow-up for

any x,e DCR".




1) Statement of Lyapunov Theorem for AS

Theorem 9.1 Let VV:D —> R beof C! such that

V(0)=0 and V(x)>0 m D-{0}; (9.2a)
V’(x)dii—V-f(x)s:D in D. (9.2b)
"

Then, x =0 1s stable. Moreover, 1f
V'(x)<0 m D-{0}, (9.2¢)

then x=0 1s asymptotically stable.

Remark 9.1 77(x) that satisfies (9.2a) 1s said positive definite.




2) Interpretation of Lyapunov conditions

Fact 1. If 7 (x) > 0. then there exists ¢ >0 by continuous property such that for all

ce(0,c”). thentheset V. :={xeR"|V(x)=c} 1sa compact set encircling the origin,

which 1s said to be a Lyapunov surface:

Remark 9.2 If 77(x)> 0, we can’t conclude that for any ¢>0, V_ is compact. For
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example, V(x,.x,)=x; + >0: for O<c<1. V(x.x,)=c 1s compact: and

for ¢>1. V(x,.,x,)=c 1snotcompact. See Fig. 9.1
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Fact 2. The derivative of 7 (x) along trajectories (or solutions) of the system (9.1)
1s:
oV
V'(x)=—-"f(x).
(¥) =" S ().
which 1s an mner product of the gradient of 77, a normal direction at x of a

Lyapunov surface, and f(x). a tangent direction at the same pomnt x of the same

Lyapunov surface: 1.e. cosine of the included angle of such two particular vectors.

Fact 3. If 77'(x) <0, 1.e. cosine of the included angle of above two particular vectors

1s within (5 , ), then, the trajectories move mside the Lyapunov surface 7_.




3) Proof of Lyapunov Theorem for AC

Stability:

Step 1. Given ¢ >0, choose r e(0.¢] such that
B ={xeR"|||x| <rjcD.

Step 2. Let a=min)V'(x). Then, o >0 smnce V(x)>0, x=0. Take Ffe(0.a).

|x||=7

and let

Q,=xeB, | V(x)<p}.
Then. Q, 1sinthe interior of B, by definition.
Step 3. Q, 1s mvanant because V(x(7))<V(x,)<p forall >0 by (9.2b).
Step 4. Q, 1s compact because it 1s closed by definition and bounded since

(2, C B,. Hence, the system (9.1) has a unique solution for all 7>0 whenever

x, €Q, by Extensibility Theorem.




Step 5. Since F(x) 1s continuous and V(0) =0, thereis & >0 such that
x| <8 = T(x)<pB.
Then, B;cQ, B, and

xpeB; = x,€Q; = x(HeQy; = x(t)eB,.
Therefore. for any given & > 0. there exists & >0 s.t.
x| <8 = [|x(@)|| <r<e.forall 1>0.

x =0 1s stable by definition. See Fig. 9.2.




Attractivity:

To show lim x(#) =0. we need to show that for any & >0, there exists 7 >0
t—+o

s.t. ||x(H)]| <& forall t>T.

In the proof of stability, we have shown that for any ¢>0 with B, in D,
there exists 7 >0 suchthat Q < B_ . while Q  1smvariant.

For any x,€Q . x(t)eQ, for all +>0. Sice V(x(#)) 1s monotonically

decreasing by (9.2¢) and bounded below by zero. Therefore, lim V' (x(#))=c=>0

ex1sts.

Now we show ¢ =0. Otherwise. we suppose ¢ >0. Since ¥ (x) 1s continuous,

there exists d >0 st. B, cQ_< Q. Then, since lm V' (x(1))=c >0, there exists
t—+o

T >0 suchthat x(7) lays outside the ball B, forall 1>T7.




Let —y = max V'(x). which exists because J7(x) 1s continuous and has a
d < x| <7

maximum over the compact set {d < || x| <n}.By(9.2¢). —y <0, and this implies
V(x(0) =V (xg) + | ; V(x(s)ds <V(x,)—yt. t>T.
For t>>T, V(x(t))<0. This contradicts 7 (x)>0 for all x. Therefore, we have

rliﬂ_lf(:f(r)) =0, which implies rl_l}l}lm x(1)=0 by (9.2a). O

Remark 9.3 Theorem 9.1 1s a local result. For a global case. we need an additional

condition to make sure that Lyapunov surface V. :={xeR"|V(x)=c} 1s compact

(closed and bounded m R") for any ¢ >0 without the breaking.




4) Lyapunov Theorem for GAS

Theorem 9.2 (Barbashin-Krasovskii Theorem) Let V:R" - R be of C' such

that
F(0)=0 and V(x)>0, Yx=#0: (9.3a)
x| —>wo = V(x)—>w: (9.3b)
Viix)<0, Yx=0. (9.3¢)

Then, x =0 1s globally asymptotically stable (GAS in short).

Proof. For any xe R". denote ¢=V(x)>0. Since lim J'(x)=o0, by definition of

||| oo

this lmmit, it implies that for such a ¢>0. there exists >0 st |[FV(x)|>c¢

< V(x) >c, whenever |x| > r.This means that QQ_c B_, which implies that Q_

1s bounded. Then, the rest of the proof 1s similar to that of Theorem 9.1. ©

Remark 9.4 The condition (9.3b) 1s said to be radially unbounded. If the system
(9.1) 1s GAS, then, the equilibrium must be unique. (why!)



5) Lyapunov Theorem for Unstability

Two facts:
Fact1. 7(x)>0 plus 7(x)>0 = the origin is unstable.

Fact 2. When testing instability, the above conditions can be relaxed.

Theorem 9.3 (Chetaev Theorem) Let J':D—R be of C' st F(0)=0 and

V(x,) >0 for some x, with arbitrarily small || x,|[. Define U={xeB, | V(x)>0}

and suppose that 77'(x)>0 m U .Then, x=0 1sunstable.




Proof. Since V(x,)=a>0.s0 x,eU. x(¢r) starting at x(0)=x, will leave U .
To see this pomnt. if x(r) e U = V(x(f)) = a.since V'(x)>0 m U .Let
y=min{V'(x)| xeU and V(x)=a},.
which exists since the continuous function 77'(x) has a minimum over the compact
set {xelU and V(x)=a}.Then, y>0 and
Vx(1) =V (x,)+ I;V'(x(s))ds >a+ I;yds =a+yt.

This mequality shows that r1_1}1+1(:]1D V(x(t)) = oo . It implies that x(7) cannot stay forever in
U because V(x) 1s bounded on U . Now. x(f) cannot leave U through the
surface 7(x)=0 since V' (x(7))=a for all #>0. Hence, it must leave U through

the sphere | x| =r. Since it can happen for an arbitrarily small || x, ||, the origin 1s

unstable. O




Remark 9.5 Since U 1s not necessarily a neighborhood of the origin, then

1) 7(x) 1n Chetaev Theorem does not have to be positive definite!

2) V'(x) in Chetaev Theorem does not have to be positive definite!




Some Examples

Example 9.1 Consider

(9.4)

e T (w2 2
xp=ax, —x, +kx (x; +x3)
g . e (w2 w2y
X, =x,—ax, +kx (x] +x3)

where a>0, a=1, and k 1s a parameter. Clearly, the origin 1s equilibrium. The

a=(] )

with 2 =++a’ -1 and g,(x,.x,)=g,(x,.x,)=kx,(x; +x;) satisfying

linearization gives

lim 18 _ o 9.5)

e || x|

If a>1. the origin 1s a saddle pomt, which 1s unstable. Then, (9.4) 1s also
unstable by linearization.




If 0<a<l, the origin 1s a center. which is stable but not AS. The linearization
fails this time. However, the linearized system has the equation for trajectories given
by

dx, x,—ax,

dx, ax, —x,
whose general solution 1s solved by
x; —2ax,x,+x; =¢.
These trajectories are ellipses 1f ¢ >0. The trajectory 1s the origin if ¢=0 (See
Remark 9.6) So it can be taken as a Lyapunov function candidate for the nonlinear
system (9.4)

V(x,.x,)=x —2ax,x, +x;.
which 1s positive definite. Taking derivative along trajectories of (9.4) results in

Vi(x,x,)=2k(x;+x))(x; +x; —2ax,x,).




Then, V(x,,x,)<0 if k<0 and 7'(x,.x,)>0 if k>0. We conclude that (9.4)
1s AS if £ <0 by Theorem 9.1 and it 1s unstable if >0 by Theorem 9.3.
Moreover, (9.4) is GAS because V_(x,.x,)={(x.x,)|x; —2axx,+x; =¢>0} is

a Lyapunov surface of ellipses for all ¢>0. which clearly satisty the radially
unbounded condition (9.3b).

Remark 9.6 The general conic equation 1s given by

Ax? +2Bxy+Cy’ +2Dx+2Ey +F =0, (9.6)

where 4., B and C arenot all zero. If A,-A,; <0 and A, >0, then (11.6) 1s an

ellipse. where

4 B D

4 B
Ay=A+C. Ay= L A=B C E|
| D E F

In Example 9.1, 4=1. B=—a. C=1. D=0, E=0 and F=-¢. It 1s easy to

be verified that when O<a <1, x]—2axx,+x; =& forall &>0 are ellipses.




Example 9.2 Consider the pendulum equation without friction:
X, =X,
X, = —ésin X, '
Take the energy function
V(x) :%(I—COSII)‘F%X;.
Clearly. 7(0)=0 and V(x)>0 1sover 27 <x, <27.

V'(x) :éi'l SInX, +X,X, :5,\:,3111:1:1 —éxz sinx, =0.
[ -1 [

— The origin 1s stable. Since 7'(x)=0, = V(x())=c>0 = limx(r)=0, the
t—m

origin i1s not AS.




Example 9.3 Consider the pendulum equation with friction:

r
. g . k- (9.7)
X, =—=sinx, ——x,

Letus try again V' (x)= % (I-cosx,)+ % x; . Since

V'(x) = %x’l Sinx, 4 x,x, = —;xi <0
—> The origin 1s stable only. However. the experience tells that it is AS because of

the friction.

>

Remark 9.9 We may apply the finer Lyapunov function to (9.7) as follows.

' ' X
V(x):iererE(l—cosxl):i(xl,x,,) Pu - Po | +§(l—cosxl),
2 [ 2 \Pa Pxn )\ X, /

where P 1s positive definite. Try to determine the elements p,. of P such that

J'(x) < 0. (Homework).




Example 9.4 Consider the system
{i’l —x,+g,(x)

X, =—x,+g,(x)
where g (x) and g,(x) satisfy |g (x)[ <k x |* near the origin. Consider the
function V' (x)= %(xf —x3).Onthe line x,=0, V(x)>0 atpoints arbitrarily close
to the origin. The derivative of 77(x) 1s given by

Vr(x) = xlz +x§ +x1§1(x)_ngz(x)-

2
Since |x,g,(x)—x,g,(x)[ <> |x,[-]g,(x)| <2k x|*. Hence,

J=1

V()= x| =2k [ x|P =[x ] =2k | x]).

Choosing r» such that B, <D and r< l

. the origin 1s unstable by Chetaev

>

Theorem.




Summary

e Theorem 9.1-9.3 consist of the classical Lyapunov theory. LaSalle-Krosovskii
Theorem 1s the starting of the modern Lyapunov theory:.

e GAS i1s more interesting for engineering application because it is no need for the
estimation of a region of attraction. which is usually a tough work. However, GAS
requirement 1s more demanding. In control, people hope to get (robustly) globally
asymptotical stabilization by feedback (refer to feedback control). or moreover. to
meet some additional optimized condition (refer to optimized control).




Homework

1. Study the stability of the pendulum equation with friction

by linearization.

2. Do Remark 9.7.
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